1. Zhang, Z., Fischer, E., Zscheischler, J., and Engelke, S. (2025+). “Numerical models outperform AI weather forecasts of record-breaking extremes”. Preprint on arXiv. [arXiv link]
  2. Zhang, Z., Bolin, D., Engelke, S., and Huser, R. (2025). “Tail dependence coefficients of moving average processes driven by exponential-tailed Lévy noise”. Extremes, in press. [journal link]
  3. Pasche, O. C., Wider, J., Zhang, Z., Zscheischler, J., and Engelke, S. (2025). “Validating deep-learning weather forecast models on recent high-impact extreme events”. Artificial Intelligence for the Earth Systems, 4(1), e240033. [journal link]
  4. Buriticá, G., Hentschel, M., Pasche, O. C., Röttger, F., and Zhang, Z. (2025). “Modeling extreme events: univariate and multivariate data-driven approaches”. Extremes, 28, 75–99. [journal link]
  5. Zhang, Z., Krainski, E., Zhong, P., Rue, H., and Huser, R. (2023). “Joint modeling and prediction of massive spatio-temporal wildfire count and burnt area data with the INLA-SPDE approach”. Extremes, 26, 339–351. [journal link]
  6. Zhang, Z., Arellano-Valle, R., Genton, M. G., and Huser, R. (2023). “Tractable Bayes of skew-elliptical link models for correlated binary data”. Biometrics, 79, 1788–1800. [journal link]
  7. Zhang, Z., Huser, R., Opitz, T., and Wadsworth, J. (2022). “Modeling spatial extremes using normal mean-variance mixtures”. Extremes, 25, 175–197. [journal link]

All my publications can also be found on my Google Scholar.